

django-yamlconf

django_yamlconf is part of VMware’s support of open source
development and community.

Handle YAML based Django settings: load Django settings from YAML files
based on a Django project name. The YAML files loaded start with a YAML
file in the directory containing the Django settings file and then loads
any other YAMLCONF files up the directory tree from the initial file.
Values from files higher up the directory tree over-ride lower in the
tree. The contents of the YAML file simply defines values that over-ride
(or add to) attributes of the standard Django settings file, e.g., for
the project “buildaudit”, the settings.py file could contain:

DEBUG = True

i.e., the value for development. This can be redefined via a
buildaudit.yaml file using the definition:

DEBUG: false

If the environment variable YAMLCONF_CONFFILE is defined, it uses as
the final YAML file loaded (in this case, the file name does not need to
match the project name and it can be located anywhere in the file
system).

Quick Start

The YAMLCONF definitions are added to the Django settings file by
including a call to the load function in the settings file. This
would normally be towards the end of the settings file. The simplest,
and likely normal usage is to call without arguments. YAMLCONF will
infer the project information from the call stack. For a standard Django
application structure, the settings file:

myproject/myproject/settings.py

would contain the development oriented definitions, e.g., database
definitions for user and password for a development database. The
settings file would then end with a call the the load function.
Additional definitions could be defined after the load function to
update conditional definitions, e.g., if DEBUG is enabled.

import django_yamlconf

...

DATABASES = {
 'default': {
 'NAME': 'example',
 'USER': 'example',
 'PASSWORD': 'example',
 'HOST': 'localhost',
 ...
 }
}
...

django_yamlconf.load()

On a production server, for this example, a myproject.yaml would be
put in place containing the host name for the production database and
the password for the example user (assuming production is using the same
database name and username). In this example, a random pwgen
password is used:

DATABASES.default.PASSWORD: 'zibiemohjuD6foh0'
DATABASES.default.HOST: 'myproject-db.eng.vmware.com'

See the load function for more information on other optional
arguments.

License

django-yamlconf is release under the BSD-2 license, see the LICENSE
file.

SPDX-License-Identifier: BSD-2-Clause

Contents:

	Management Commands
	ycexplain Command

	yclist Command

	ycsysfiles Command

	Support for Dictionaries

	Attribute Substitution

	Hiding values

	Extending Values

	Pre-defined Attributes

	Attribute Documentation

	Typical Structure

	Environment Variables

	Public Methods
	add_attributes Function

	defined_attributes Function

	explain Function

	list_attrs Function

	load Function

	sysfiles Function

	Examples

	Limitations

	Releases & Major Branches
	Version 1.4.0

	Version 1.3.0

	Version 1.2.1

	Version 1.2.0

	Version 1.1.0

	Version 1.0.0

	Contributing

	Authors

Management Commands

YAMLCONF includes three management commands (django_yamlconf needs
to be added to the INSTALLED_APPS to add these commands):

	ycexplain: explain where an attribute value was defined

	yclist: list the attribute values defined via YAMLCONF

	ycsysfiles: Create system control files based on attribute
controlled template files

The attributes available to the management commands can be extended
using methods returning dictionaries of values. The method names can be
defined in the settings file or via a YAMLCONF file via the
attribute YAMLCONF_ATTRIBUTE_FUNCTIONS, e.g.,

YAMLCONF_ATTRIBUTE_FUNCTIONS:
 - 'health_checks.ycattrs.attributes'

As can be seen from the example method above, these additional attibutes
are primarily used with the ycsysfiles command.

ycexplain Command

This ycexplain gives information on the value defined by the set of
YAML files loaded for an application along with any documentation and
information on eclipsed attribute values lower in the directory tree
structure. For example, for the DEBUG attribute:

$ python manage.py ycexplain DEBUG

DEBUG = "False" (via "/u/mrohan/clients/xmpl/buildaudit.yaml")

Documentation:
 Enable or disable debugging functionality. On the production
 server this attribute should be set to false

Eclipsed values:
 "True" via "/u/mrohan/clients/xmpl/buildaudit/buildaudit.yaml"
 "True" via "buildaudit.settings"

yclist Command

The yclist command simply lists the attributes defined via YAML
files, e.g.,:

$ python manage.py yclist
Listing YAMLCONF managed attributes

ALLOWED_HOSTS ['localhost']
BACKUP_CONFIG.directory {BASE_DIR}/backup
BASE_DIR /home/mrohan/clients/osstp-yc/webapps
CONTROL_FILE {WEBAPPS_DIR}/osstpmgt.yaml
DATABASES.default.CONN_MAX_AGE 600
DATABASES.default.HOST {DBHOST}
DATABASES.default.NAME {DBNAME}
DATABASES.default.PASSWORD {DBPASSWORD}
DATABASES.default.USER {DBUSER}
DBHOST localhost
DBNAME osstp
DBPASSWORD A-Password
DBUSER osstp
INSTALL_DIR /var/oss/osstp
MANAGE_PY {WEBAPPS_DIR}/manage.py
OS_MACHINE x86_64
OS_NODE mrohan-osstp-yc
OS_PROCESSOR x86_64
OS_RELEASE 4.4.0-101-generic
OS_SYSTEM Linux
ROOT_URL https://{SERVER_NAME}
SCM_ID v2017.07.13-103-gfac514b
SERVER_NAME localhost
TOP_DIR /home/mrohan/clients/osstp-yc
USER mrohan
VIRTUAL_ENV /home/mrohan/clients/venv
WEBAPPS_DIR {BASE_DIR}
YAMLCONF_SYSFILES_DIR {BASE_DIR}/osstpmgt/templates/sys

Use "ycexplain" for more information on individual attributes

ycsysfiles Command

The ycsysfiles management command supports the creation of system
control files, e.g., Apache configuration files, based on the attributes
defined via YAMLCONF files. The command scans the directory defined by
by the attribute, e.g.,:

YAMLCONF_SYSFILES_DIR: '{BASE_DIR}/templates/sys'

for each file found, it

	Maps it to a file system path by stripping the
YAMLCONF_SYSFILES_DIR prefix and expanding attribute references
(yes, that paths under this directory will contain { and }
characters).

	If the mapped file exists and is writable to the user running the
ycsysfiles command, it is updated with the contents generated by
Django template engine with YAMLCONF defined attributes being
available for substitution in the templates or use for conditionals.

For example, the Django tutorial implementations under the examples
directory contains, within the mysite/templates/sys directory, the
template files:

	etc/apache2/sites-available/mysite.conf, this template would be
used to create the system file
/etc/apache2/sites-available/mysite.conf (the Apache site config
file on an Ubuntu system).

	{BASE_DIR}/sysfiles.txt, this template would be used to create
the file sysfiles.txt relative the directory where the Django
application is installed. E.g., if installed in /var/mysite, the
file /var/mysite/sysfiles.txt would be created.

The paths under the YAMLCONF_SYSFILES_DIR directory can reference
YAMLCONF defined attributes via standard Python key based format
references, as with BASE_DIR above.

The attributes available can be extended using the
YAMLCONF_ATTRIBUTE_FUNCTIONS attribtue. This makes attributes based
on, e.g., the contents of the Django application database available when
processing files. A contrived example would be, in a ycattrs.py file
(conventionally in the same directory as the settings.py file):

def userlist():
 return {
 'USERS': User.objects.all(),
 }

Support for Dictionaries

YAMLCONF uses the “.” character to identify attributes defined as part
of a dictionary, e.g., the DATABASES attribute. To set, e.g., the
password for a database connection:

DATABASES.default.PASSWORD: some-secret-password

It is considered an error if dotted name refers to a settings attribute
that is not an dictionary, the setting is ignored by YAMLCONF.

The dotted notation should be used to update dictionaries already
defined in the settings file. To add a new dictionary, a YAML dictionary
definition should be used, e.g.,:

NEW_DICTIONARY:
 key1: value1
 key2: value2

Attribute Substitution

Frequently, attributes values are defined in terms of other attribute
values, most commonly using the base directory to define other
directories. The YAMLCONF allows other attributes to be referenced using
the Python named formatting syntax, e.g.,:

LOG_DIR: "{BASE_DIR}/log"

Currently only attributes defined via YAML files can be used in this
way. To disable this on a per-attribute basis, the :raw qualifier
should be defined to modify the behaviour for attribute, e.g.,:

LOGGING.formatters.simple.format: '%(asctime)s %(levelname)s %(message)s'
LOGGING.formatters.simple.format:raw: True

Hiding values

The YAMLCONF includes an experimental view to handle URLs to display
attributes (should only be used in a debugging context), e.g., adding
the URL definition to your application:

url(r'^yamlconf/', include('django_yamlconf.urls')),

will display the YAMLCONF attributes. For older versions of Django, the
namespace needs to be explictly defined:

url(r'^yamlconf/', include('django_yamlconf.urls', namespace='django_yamlconf')),

An example of the page displayed is:

[image: YAMLCONF Index Page]

Attributes Index Page

By default, any attribute value with the string PASSWORD in the name
will have their values hidden in the HTML displayed. Other, sensitive,
values can be explicitly hidden by defining the qualifier attribute
:hide, e.g.,:

APIKEY: 'my-api-key'
APIKEY:hide: True

Extending Values

For list values, the qualifier attributes :prepend and :append
can be used to extend the underlying definition, e.g., add another admin
user, the following definition can be used:

ADMINS:append: 'someuser@vmware.com'

The value of :prepend or :append qualified attribute can be
either a single value, as above, or a list of values. When a list is
given, the attribute is extend with the extra values, e.g.,:

ADMINS:append:
 - 'someuser1@vmware.com'
 - 'someuser2@vmware.com'

Normally, list values in the settings file are simply unordered lists.
There are, however, some values where the order matters, in particular,
the MIDDLEWARE list. A middleware that short-circuits the handling
of requests would need to be placed at the beginning of the list. This
is the rationale for the :prepend functionality.

Pre-defined Attributes

The YAMLCONF module predefines the following attributes which can be
used, along with other attributed defined, via attribute substitution:

BASE_DIR The directory containing the setting.py file

PYTHON This is a dictionary giving the major, minor, micro,
releaselevel serial values for the Python interpretor

OS_MACHINE The value of the platform.machine() function, e.g.,
x86_64

OS_NODE The value of the platform.node() function, the system
short name

OS_PROCESSOR The value of the platform.machine() function, e.g.,
x86_64

OS_RELEASE The value of the platform.release() function, e.g.,
4.4.0-101-generic

OS_SYSTEM The value of the platform.system() function, e.g.,
Linux

TOP_DIR The directory above BASE_DIR

USER The login name of the current user

VIRTUAL_ENV If run within a Python virtual environment, this
attribute is defined to be the path to the environment, otherwise it has
the value None

Attribute Documentation

Appending :doc to an attribute name in a YAML file defines a
documentation string for the attribute. This should be used to give
information on the expected value for the attribute and how the value
might differ on production, beta and development servers, e.g.,
documentation for the DEBUG attribute would be defined using the YAML:

DEBUG:doc: |
 Enable or disable debugging functionality. On the production server
 this attribute should be set to false

Typical Structure

On a typical production system for the “buildaudit” app, a local
buildaudit.yaml would exist in, e.g., the /var/www directory.
This would contain the production passwords, debug settings, etc. Under
this directory, a webapps directory could contain another
buildaudit.yaml file possibly generated by a build process which
could define attributes identifying the build, the Git Hash for the
code, build time, etc. Finally, a buildaudit.yaml file co-located
with the settings.py file giving the base attributes and their
documentation strings:

+- /var/www
 +- buildaudit.yaml
 +- webapps
 +- buildaudit.yaml
 +- buildaudit
 +- buildaudit.yaml
 +- settings.py

Environment Variables

As a final source for values, the environment is queries for all environment
names beginning with YAMLCONF_. E.g., to “inject” the value “xyx” for the
setting “XYZ”, the environment can be used:

$ export YAMLCONF_XYZ=xyz

Environment variable values are pulled into the settings as a simple string
value. For more complex values, the environment value can be interpreted
as a JSON encode structure if a setting with the :jsonenv qualifier is True
for the setting. E.g., in a Fabric base deployment system, the servers to
deploy to can be defined in the base YAMLCONF file as:

DEPLOY_SERVERS:
 - '{DEPLOY_USER}@localhost'
DEPLOY_USER: '{USER}'

I.e., deploy to localhost as the current user. In a production environment,
the production servers would likely be a list of servers behind an HA-Proxy
server. This list can be defined via a local YAMLCONF file in the directory
tree on the system where deployments are run. A local file can, however, be
awkward in some contexts, e.g., deploy occurs as a Concourse job, and an
environment variable definition is easier. In this case, the value can be
a JSON encoded value and JSON decode enabled via the :jsonenv qualifier.
The base YAMLCONF file would now include the definitions:

DEPLOY_SERVERS:
 - '{DEPLOY_USER}@localhost'
DEPLOY_SERVERS:jsonenv: True

and the list of servers to deploy to “injected” via an environment variable:

$ export YAMLCONF_DEPLOY_SERVERS='["{DEPLOY_USER}@host-a", "{DEPLOY_USER}@host-b"]'

Public Methods

The primary public method is the load method which loads the
attribute definitions from YAML file located in the directory tree.
Other methods are exported, and are documented here, but it is expected
that these methods are only used by the management commands.

add_attributes Function

	
django_yamlconf.add_attributes(settings, attributes, source)

	Add a set of name value pairs to the set of attributes, e.g.,
attributes defined on the command line for management commands. Since
this occurs after Django has loaded the settings, this function
does not, in general, change behaviour of Django. It is used to
add attribute definitions from management command lines. While this
does not impact the behaviour of Django, it does make the attributes
available for use in templates for the ycsysfiles command.

	Parameters

	
	settings – the Django settings module

	attributes – the dictionary of name/values pairs to add

	source – the name for the source (displayed by ycexplain)

	Returns

	None

defined_attributes Function

	
django_yamlconf.defined_attributes(settings=None, template_use=False)

	Return a dictionary giving attribute names and associated values.
This dictionary can be used as the variables when rendering templates.
This is the set attributed used used as the variables when rendering
templates for the ycsysfiles command.

	Parameters

	
	settings – the Django settings module (this is optional,
defaults to the settings modules used when loading)

	template_use – If the the set of attributes return needs to be
used to process a template, in the dictionary returned,
attribute keys are added for dictionary parents e.g., “DATABASES”, if
“DATABASES.default…” is a YAMLCONF defined attribute. The usage
without this option support the yclist management command.

	Returns

	a dictionary giving attribute names and associated values.

	Return type

	dict

explain Function

	
django_yamlconf.explain(name, settings=None, stream=None)

	Explain the source for an attribute definition including sources that
were eclipsed by higher level YAML definition files. If the attribute
has associated documentation, it is also printed.

This routine is only used by the YAMLCONF management command ycexplain.

	Parameters

	
	name – the YAMLCONF controlled setting name

	settings – the Django settings module

	stream – the stream to write the explanation text (defaults to
sys.stdout)

	Returns

	None

list_attrs Function

	
django_yamlconf.list_attrs(settings=None, stream=None)

	Write a list of attributes managed by YAMLCONF to the given stream
(defaults to sys.stdout).
Additional information can be printed using the explain routine.

This routine is only used by the YAMLCONF management command yclist.

	Parameters

	
	settings – the Django settings module

	stream – the stream to write the list text

	Returns

	None

load Function

	
django_yamlconf.load(syntax='yaml', settings=None, base_dir=None, project=None)

	Load the set of YAML files for a Django project. The simplest usage is
to call this at the end of a settings file. In this context, no arguments
are needed.

	Parameters

	
	syntax – The “syntax” parameter should name a Python module with
a “load” method, e.g., the default is “yaml.load”. Other
possibiliities could be “json” to use JSON formatted file or,
even, “pickle” but that would be strange. The “syntax” name is
also used as the file extension for the YAMLCONF files.

	settings – The “settings” should be module containing the Django
settings. This is determined from the call stack if no module
is given.

	base_dir – The “base_dir” defines the starting directory for
YAMLCONF files and defaults to the directory containing the
settings module.

	project – The “project” is the name of the Django project and
defaults to the name of the directory containing the settings modules.

	Returns

	None

sysfiles Function

	
django_yamlconf.sysfiles(create, noop, settings, rootdir='', render=None)

	Traverse the sys templates directory expanding files to the destination
directory.

	Parameters

	
	create – the template files should be created, normally will only
update files that already exist on the system and are writable.

	noop – no-op mode, print what would be done.

	settings – the Django settings module

	rootdir – the directory to create the system files, defaults to
/, i.e., the root file system.

	render – the rendering engine, if not given, defaults to Django’s
render_to_string

	Returns

	None

Examples

The examples are based on the polls example from the Django
Project [https://www.djangoproject.com/] web site. There are two
flavors of this example:

	Under Django version 2.0 in the directory examples/django-2.0

	Under Django version 3.0 in the directory examples/django-3.0

The django-1.11 directory has been removed as it is end of life and
GitHub is generating secuity issues on the old dependencies.

See the Examples Directory on
GitHub [https://github.com/vmware/django-yamlconf/tree/master/examples].

The examples for both versions of Django behaviour similarly: there are
Makefile targets to:

	init initialize a local SQLite database for the application
(should be the first target executed, if experimenting.

	runserver to run a local server

	General utility targets for YAMLCONF: yclist, ycexplain and
ycsysfiles.

An example of the usage of YAMLCONF, would be, e.g., in a production
environment, switching to a PostgreSQL database via the creation of a
mysite.yaml file (would need to explicitly install the
psycopg2-binary module):

DATABASES.default:
 ENGINE: django.db.backends.postgresql_psycopg2
 NAME: mysite
 USER: mysite
 PASSWORD: my-password
 HOST: localhost
 PORT: ''

Limitations

Some of the current limitations for this implementation are:

	Currently cannot substitute list values, e.g.,:

ADMINS:
 - jsmith
 - auser
MANAGER: "{ADMINS}"

	The pre-defined attributes should also include the host IP address

These might be addressed if the need arises.

Releases & Major Branches

Version 1.4.0

	Tagged with v1.4.0.

	Added support for JSON encoded environment values if decorated with
:jsonenv. If JSON decoding fails (invalid JSON string), the value
is used as is. This allows the definition of more complex values via
the environment, list, dictionaries, etc. This can be used in K8s
environments, e.g., Concourse

	Added a CODE-OF-CONDUCT file for contributors.

Version 1.3.0

	Tagged with v1.3.0.

	Dropped explicit dependency on Django for package. Overall project
should include Django but also allows usage of package outside of a
Django project.

	Update to support Django 3.0 (staticfiles -> static in template)

	Added Django 3.0 example (polls)

	Removed the Django 1.x example (polls)

Version 1.2.1

	Tagged with v1.2.1.

	Fix generation of the long description for the package.

Version 1.2.0

	Tagged with v1.2.0.

	Updates to support Django 3.0: Simply use “six” instead of the
support “django.utils.six” package and use “render” instead of
“render_to_response”.

	ycsysfiles should generate executable files if the source template
file is executable.

	Ensure the absolute path is used when searching for YAML control
files. This issue is seen when running Django apps under uWSGI
control.

	Added the built-in attribute CPU_COUNT (primarily for use in uWSGI
ini files) giving the number of available CPUs.

Version 1.1.0

	Tagged with v1.1.0.

	Handle stricter loading for newer versions of PyYAML. The warning
“YAMLLoadWarning: calling yaml.load() without Loader=… is deprecated” is
generated referring to https://msg.pyyaml.org/load for full details. The
YAML load now specified Loader=FullLoader.

	The defined_attributes function now returns a dictionary with additional
keys if the attribute defined is a nested dictionary, the top level
dictionary from the setting file is now also added, e.g., if
“DATABASES.default” is defined, the value returned will now also have
a “DATABASES” key.

	Added docs directory and Sphinx infrastructure to support publishing
to readthedocs.org

	Added support for a final, environment defined, YAML file defined
via the environment variable YAMLCONF_CONFFILE

Version 1.0.0

	Initial public release (tagged with v1.0.0)

Contributing

The django-yamlconf project team welcomes contributions from the
community. Before you start working with django-yamlconf, please
read our Developer Certificate of
Origin [https://cla.vmware.com/dco]. All contributions to this
repository must be signed as described on that page. Your signature
certifies that you wrote the patch or have the right to pass it on as an
open-source patch. For more detailed information, refer to
CONTRIBUTING.md.

Authors

Created and maintained by Michael Rohan mrohan@vmware.com

Index

 A
 | D
 | E
 | L
 | S

A

 	
 	add_attributes() (in module django_yamlconf)

D

 	
 	defined_attributes() (in module django_yamlconf)

E

 	
 	explain() (in module django_yamlconf)

L

 	
 	list_attrs() (in module django_yamlconf)

 	
 	load() (in module django_yamlconf)

S

 	
 	sysfiles() (in module django_yamlconf)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/yamlconf-list.png
[YAMLCONF Attribu x

<« C | ® localhost:8000/yamlconf/ @ | i

YAMLCONF Attributes

Attribute Value
ADMINS 2values:

1 adningexanple. con
2. developergexample. con

ALLOWED_HOSTS 2values:

1 localhost
2. mysite.exanple. con

BASE DIR /u/mrohan/github/django-yanl conf/exanples/django-2.0/mysite
DATABASES.defaultNAME ~ /u/mrohan/github/django-yaml.conf/examples/django-2.0/mysite/db. sqlite3
INSTALLED_APPS 8values:

1. polls.apps.PollsConfig
2.django. contrib.adnin
3.django. contrib.auth

4.django. contrib. contenttypes
5.django. contrib. sessions
6.django. contrib.messages
7.django. contrib. staticfiles
8.django_yaml conf

0S_MACHINE x86_64

0s_NODE nrohan-osstpl

0S_PROCESSOR x86_64

OS_RELEASE 4.15.0-24-generic

0Os_SYsTEM Linux

PYTHON Key Value
MINOR 5
SERIAL o

RELEASELEVEL final
MAT0R El

_static/plus.png

nav.xhtml

 Table of Contents

 		
 django-yamlconf

 		
 Management Commands

 		
 ycexplain Command

 		
 yclist Command

 		
 ycsysfiles Command

 		
 Support for Dictionaries

 		
 Attribute Substitution

 		
 Hiding values

 		
 Extending Values

 		
 Pre-defined Attributes

 		
 Attribute Documentation

 		
 Typical Structure

 		
 Environment Variables

 		
 Public Methods

 		
 add_attributes Function

 		
 defined_attributes Function

 		
 explain Function

 		
 list_attrs Function

 		
 load Function

 		
 sysfiles Function

 		
 Examples

 		
 Limitations

 		
 Releases & Major Branches

 		
 Version 1.4.0

 		
 Version 1.3.0

 		
 Version 1.2.1

 		
 Version 1.2.0

 		
 Version 1.1.0

 		
 Version 1.0.0

 		
 Contributing

 		
 Authors

_static/up.png

_static/up-pressed.png

